当前位置:给览网 » 公司 » 北京精科智创科技发展有限公司
- 材料电学性能测试仪
- 压电材料测试仪
- 介电测试仪
- 压电材料电阻率综合测试仪
- 材料分析仪
- 石英玻璃密封管
- 压电极化装置
- 梯温析晶测定仪
- 热电材料测试
- 高温铁电材料测试仪
- 铁电材料综合测试仪
- 热敏电阻材料
- 高温介电测试仪
- 高低温介电测量仪
- d33测量仪
- 准静态d33测量仪
- 材料电磁性能测试
- 材料阻抗分析仪
- 高低温压电d33测量系统
- 热释电系数高温测试系统
- 高温气敏材料测量系统
- 高温热敏电阻材料参数测量分析系统
- 电介质充放电测试系统
- 高温超导材料交流磁化率测量仪
- 居里点温度测试仪
- 变温光谱测试系统
- 电卡效应测试仪
- 压电放大器
- 铁电测试仪
- D33测试仪
- 材料制样设备
- 电陶瓷压片机
- 可计量型蠕动泵蒸汽发生器
- 压电高压极化装置
- 真空封管机
- 热压机
- 真空手套箱
- 实验型喷雾干燥机
- 球磨机
- 智能型管式梯温炉
- 多模具型热压机
- 压电陶瓷高低温试验箱
- 快速退火炉
- 原位高温成像烧结试验仪
- 开炼机
- 淬火炉
- 质量控制检测仪
- 垂直度检测仪
- 水平示值检定仪
- 水平零位检定器
- 数显指示表检定仪
- 全自动指示表检定仪
- 冲床生产远程自动统计系统
- 位移传感器自动校准装置
- 冲床生产远程自动统计系统
- 非接触式静电电压表校准装置
- 小角度仪
- 数控指示表检定仪
- 电陶瓷压片机
- 材料电磁学性能测试仪
- 微波介质材料电磁特性
- 电梯加速度测试仪
- 扶梯安全测试仪
- 咪表检定装置
- 太阳能电池测试仪
- 四探针测试仪
- 双极板质子交换膜燃料电池测系统
- 材料磁致伸缩测量仪
- 微扰法复介电常数测试系统
- 材料样品高低温冷热台
- 毛细管样品冷热台
- 地质流体包裹体冷热台
- 轮廓仪
- 粗糙度仪
- 凸轮轴测量仪
- 高阻检定装置
- 数字式高阻检定装置
- 压力容器声发射仪
- 位移激光测微仪
- 氧化锌避雷器测试仪校准装置
- 非金属熔接焊机检测校准装置
- 多功能二维材料转移平台
- 高低温冷热台
- 材料热学性能测试仪
- 材料热导率系数测试仪
- 界面材料热阻及热传导系数量测装置
- 全温区定位高温梯度炉
- 材料高低温热膨胀测试系统
- 材料高温比热容测试仪
- 全自动材料高温比热容测试仪
- 热分析仪
- 激光导热测试仪
- 材料电化学实验设备
- 电化学腐蚀摩擦磨损试验仪
- 材料表面性能综合试验仪
- 新能源锂空气电池测试箱
- 皮安电流表
- 金属丝材导电率综合测试仪
- 变温焦耳热闪蒸系统
- 美国吉时利精密源表
- 材料高温电学测试仪
- 导电材料高温电阻率测试仪
- 形状记忆合金特性测试系统
- 高低温方阻测试系统
- 高温介电温谱仪
- 高温熔融电导率测试装置
- 玻璃熔体电阻率试验仪
- 高温绝缘电阻仪
- 高温绝缘材料电阻测试仪
- 高温铁电测试仪
- 高温压电D33测试系统
- 自动化实验设备
- 氧化诱导实验制样机
- 台式颗粒制样机
- 电熔拉伸剥离试样制样机
- 薄膜50点自动耐电压强度测试仪
- 薄膜电弱点测试仪
- 复合材料超低温拉伸性能测试仪
- 管道防腐层阴极剥离试验机
- 柔性材料测试设备
- 丝网印刷机
- 柔性材料及器件测试系统
- 薄膜材料
- 电池材料
- 薄膜电阻综合测试测试仪
- 绝缘及抗静电材料电阻率仪
- 薄膜双向拉伸仪
- 光学测试测试系统
- 进口设备
- 高频电刀校准装置
- 铁电测试仪
- 航空航天测试仪
- 饱和磁性分析仪
- 摩擦纳米发电机测试系统
- 电输运性质测量系统
- 半导体材料设备
- 微流控芯片真空热压机
- 探针台
- 半导体C-V特性分析仪
- 新能源和储能
- 固态电池压力绝缘模具套装
- 焦耳热测试仪
- 脉冲电闪蒸反应器
- 超快高温炉
- 新能源线束高压测试系统
- 新能源电池测试
- 教学仪器
- 淬冷法相平衡实验仪
- 固相反应实验仪
- 传感器
- 碳材料测试仪
- 材料高温力学测试系统
- 材料高低温洛氏硬度计
- 先进材料测试仪器
- 击穿及耐压测试仪
- 无损检测仪
- 静电计
- 磁性测试
- 绝缘材料测试
公司名称:北京精科智创科技发展有限公司
联系人:谢经理
电话:010-60414386
手机:18210063398
传真:010-60414386
邮件:2822343332@qq.com
地址:北京顺义北小营
压电测试仪之多层压电陶瓷变压器的振动与疲劳
发布时间:2022-10-18浏览次数:1051返回列表
多层压电陶瓷变压器的振动与疲劳
推荐使用:GDPT-900A型变温压电测试系统,ZJ-3型静压电测试系统
压电变压器早于1956年由C.A.Rosen提出。20世纪80年代初,清华大学提出了多层独石化压电变压器的创意及概念,并在上早开展了多层压电变压器的研究。由于压电变压器升压比高、电磁干扰小、转换效率高、体积小、质量轻、输出波形好等优点,近年来在液晶显示器背光电源、高压臭氧发生器、空气清新器、雷达等领域中获得了应用。
压电变压器是电场与振动场间相互耦合的谐振器件,在谐振状态下,器件会因负载、使用环境、输入电压、材料等因素,产生发热、疲劳甚至断裂等问题。有关压电陶瓷材料疲劳的研究较多,学者提出了一些疲劳机理,目前广为大家接受的解释主要有畴夹持模型、电极连接不合适以及内应力集中。Zuo等人认为,在电场的作用下,由热应力引起的微裂纹将成为裂纹扩展的根源。Ru等人的研究表明,多层陶瓷器件失效的主要机制是电极与陶瓷材料之间的界面开裂以及电极端部的界面开裂。Gong等人通过非线性有限元法模拟了多层压电器件中内电极周围的电场分布,并发现在内电极端部边缘的电场分布非常不均匀,因此电极周围的陶瓷材料因铁电转变或电致伸缩而产生不协调变形,形成裂纹。为下一步深入研究压电变压器微裂纹的形成及扩散机理,本实验研究了压电变压器的微振动及疲劳行为。采用激光扫描测振仪以及 疲劳加载实验测试压电变压器的特性变化。
1 压电变压器机理及结构
通过掺杂CdCO、SrCO₃、ZnO或Li2CO₃获得压电变压器所用高性能低烧兼优的Pb(Mg₁/₃Nb₂/₃)O₃.Pb(Ni₁/₃Nb₂/₃)O₃一Pb(ZrTi)O₃压电材料。多层压电变压器的结构如图1所示。器件内部有19层陶瓷介质,外形尺寸约30 mm8 mmx3 mm。输入电极在器件的中部,输出电极分布在器件的两端。在交变输入电压以及机电耦合系数k₃₁和k₃₃的作用下,变压器沿长度方向发生谐振。对于半波谐振,有一条节线出现在器件的中心位置,对称的振动使变压器在两端产生相同的输出电压,即升压比相同。

波谐振频率约110 kHz。

测定多层压电变压器的谐振频率主要包括两个方法:用Polytec OFV 056测振扫描探头对样品在一定频率范围扫描,获得样品在激光入射方向上样品表面各点的振动速度与位移;用信号发生器与示波器配合,观测输出电压,终测得谐振频率。

信号发生器输出正弦波形,实际输入电压峰峰值约10 V。在粗测谐振频率55 kHz附近微调频率,测量串联小电阻两端的输出电压,如图4。输出电压的极大值出现在54.8 kHz处,此为样品的实际谐振频率。
3 疲劳加载实验
疲劳加载实验条件:输入信号的波形为正弦波,频率为半波谐振频率54.8 kHz,电压峰峰值为30 V(实际工作电压在12 V以下)。输出负载为94 kΩ无感电阻。设置循环加载次数为109次,即连续振动约5 h。


由于疲劳加载可能会导致谐振频率的改变,因此在各项对比分析之前,首先需要重新测定变压器样品的半波谐振频率。用示波器观察疲劳加载后变压器样品的输出电压,确定疲劳后谐振频率为55.6 kHz,与疲劳加载前的谐振频率54.8 kHz比,相对漂移量约1.5%。
3.2 谐振模态振动的衰退
使用激光测振仪,在定频模式测得疲劳加载后变压器样品在一个振动周期里的图像。图5a中,各测量点的振动相位比较一致,说明在疲劳加载前,变压器样品长度方向上的形变十分协调:图5b中,各测量点的振动有些杂乱,这说明在疲劳加载后样品振动有些不稳定。从直观上可以判断,疲劳加载使得变压器样品的振动表现有所衰退。定量分析上,图5a中显示输出端端部的振动速率在300μm/s左右,而图5b中仅在100 μm/s左右。由此表明,疲劳加载除了使多层压电 变压器的形变与振动的协调性变差外,还使得整体的振动速率下降,振动幅度变小。
输入信号的频率固定在样品的半波谐振频率54.8kHz处,改变输入信号的电压幅值,测得输入端端部振幅Ai对输入信号电压峰峰值VP-P的曲线,如图6所示。在输入电压小于4 V时,变压器输入端振幅与输入电压呈现线性关系;当电压大于4V后,进入非线性区;大于10 V后,振幅逐渐趋于饱和。



1)有限元法获得变压器半波谐振频率约55 kHz,全波谐振频率约110 kHz。
2)激光测振仪测得压电变压器半波谐振频率为55.7kHz;信号发生器与示波器配合,根据输出显示,测得压电变压器的谐振频率为54.8 kHz。实验结果与有限元计算基本一致。
3)疲劳加载除了使多层压电变压器的形变与振动的协调性变差外,还使得整体的振动速率下降,振动幅度变小,升压比降低,约是疲劳前的85%左右 。