当前位置:给览网 » 公司 » 北京精科智创科技发展有限公司
- 材料电学性能测试仪
- 压电材料测试仪
- 介电测试仪
- 压电材料电阻率综合测试仪
- 材料分析仪
- 石英玻璃密封管
- 压电极化装置
- 梯温析晶测定仪
- 热电材料测试
- 高温铁电材料测试仪
- 铁电材料综合测试仪
- 热敏电阻材料
- 高温介电测试仪
- 高低温介电测量仪
- d33测量仪
- 准静态d33测量仪
- 材料电磁性能测试
- 材料阻抗分析仪
- 高低温压电d33测量系统
- 热释电系数高温测试系统
- 高温气敏材料测量系统
- 高温热敏电阻材料参数测量分析系统
- 电介质充放电测试系统
- 高温超导材料交流磁化率测量仪
- 居里点温度测试仪
- 变温光谱测试系统
- 电卡效应测试仪
- 压电放大器
- 铁电测试仪
- D33测试仪
- 材料制样设备
- 电陶瓷压片机
- 可计量型蠕动泵蒸汽发生器
- 压电高压极化装置
- 真空封管机
- 热压机
- 真空手套箱
- 实验型喷雾干燥机
- 球磨机
- 智能型管式梯温炉
- 多模具型热压机
- 压电陶瓷高低温试验箱
- 快速退火炉
- 原位高温成像烧结试验仪
- 开炼机
- 淬火炉
- 质量控制检测仪
- 垂直度检测仪
- 水平示值检定仪
- 水平零位检定器
- 数显指示表检定仪
- 全自动指示表检定仪
- 冲床生产远程自动统计系统
- 位移传感器自动校准装置
- 冲床生产远程自动统计系统
- 非接触式静电电压表校准装置
- 小角度仪
- 数控指示表检定仪
- 电陶瓷压片机
- 材料电磁学性能测试仪
- 微波介质材料电磁特性
- 电梯加速度测试仪
- 扶梯安全测试仪
- 咪表检定装置
- 太阳能电池测试仪
- 四探针测试仪
- 双极板质子交换膜燃料电池测系统
- 材料磁致伸缩测量仪
- 微扰法复介电常数测试系统
- 材料样品高低温冷热台
- 毛细管样品冷热台
- 地质流体包裹体冷热台
- 轮廓仪
- 粗糙度仪
- 凸轮轴测量仪
- 高阻检定装置
- 数字式高阻检定装置
- 压力容器声发射仪
- 位移激光测微仪
- 氧化锌避雷器测试仪校准装置
- 非金属熔接焊机检测校准装置
- 多功能二维材料转移平台
- 高低温冷热台
- 材料热学性能测试仪
- 材料热导率系数测试仪
- 界面材料热阻及热传导系数量测装置
- 全温区定位高温梯度炉
- 材料高低温热膨胀测试系统
- 材料高温比热容测试仪
- 全自动材料高温比热容测试仪
- 热分析仪
- 激光导热测试仪
- 材料电化学实验设备
- 电化学腐蚀摩擦磨损试验仪
- 材料表面性能综合试验仪
- 新能源锂空气电池测试箱
- 皮安电流表
- 金属丝材导电率综合测试仪
- 变温焦耳热闪蒸系统
- 美国吉时利精密源表
- 材料高温电学测试仪
- 导电材料高温电阻率测试仪
- 形状记忆合金特性测试系统
- 高低温方阻测试系统
- 高温介电温谱仪
- 高温熔融电导率测试装置
- 玻璃熔体电阻率试验仪
- 高温绝缘电阻仪
- 高温绝缘材料电阻测试仪
- 高温铁电测试仪
- 高温压电D33测试系统
- 自动化实验设备
- 氧化诱导实验制样机
- 台式颗粒制样机
- 电熔拉伸剥离试样制样机
- 薄膜50点自动耐电压强度测试仪
- 薄膜电弱点测试仪
- 复合材料超低温拉伸性能测试仪
- 管道防腐层阴极剥离试验机
- 柔性材料测试设备
- 丝网印刷机
- 柔性材料及器件测试系统
- 薄膜材料
- 电池材料
- 薄膜电阻综合测试测试仪
- 绝缘及抗静电材料电阻率仪
- 薄膜双向拉伸仪
- 光学测试测试系统
- 进口设备
- 高频电刀校准装置
- 铁电测试仪
- 航空航天测试仪
- 饱和磁性分析仪
- 摩擦纳米发电机测试系统
- 电输运性质测量系统
- 半导体材料设备
- 微流控芯片真空热压机
- 探针台
- 半导体C-V特性分析仪
- 新能源和储能
- 固态电池压力绝缘模具套装
- 焦耳热测试仪
- 脉冲电闪蒸反应器
- 超快高温炉
- 新能源线束高压测试系统
- 新能源电池测试
- 教学仪器
- 淬冷法相平衡实验仪
- 固相反应实验仪
- 传感器
- 碳材料测试仪
- 材料高温力学测试系统
- 材料高低温洛氏硬度计
- 先进材料测试仪器
- 击穿及耐压测试仪
- 无损检测仪
- 静电计
- 磁性测试
- 绝缘材料测试
公司名称:北京精科智创科技发展有限公司
联系人:谢经理
电话:010-60414386
手机:18210063398
传真:010-60414386
邮件:2822343332@qq.com
地址:北京顺义北小营
ZJ-6压电测试系统介绍关于压电陶瓷的制备流程
发布时间:2017-12-05浏览次数:1938返回列表
陶瓷样品的制备流程
将以上初始原料按照化学计量比称量后放在红外烘箱内干燥,装入密封的球磨罐中,对于含有Na2CO3试剂的系列样品,采用无水乙醇为球磨介质,其他系列样品则以蒸馏水为球磨介质球磨四小时。将所得浆料和玛瑙磨球分离后烘干,而后装入氧化铝坩锅,按照不同体系采用不同预合成制度对于样品进行预合成。陶瓷粉料的预合成过程是一种化学反应进行的过程。这种化学反应不是在熔融状态下进行的,而是在比熔点低的温度下,利用固体颗粒间的扩散来完成的固相反应。对体系(1)和(2)采用590℃×1h+710℃×1h+820℃×1h的预合成制度 [44];由于体系(3)是高层数的铋层状结构,其合成需要较高的能量方能实现,故采用以的速率升至850~900℃的高温,之后保温2小时。将预合成完的粉料手工研磨成200目左右的细粉,以质量比为5~8%加入聚乙烯醇(PVA)粘合剂造粒后并取120~150目粒径的粉料,在单向压力机上以16.3MPa的压力压制成直径为10毫米,厚度在0.8~1.8毫米范围内的圆片坯体。经过550℃保温1小时排胶后在大气环境下对坯体进行烧结。影响陶瓷烧结的因素主要有锻烧温度、保温时间和升温速率等。锻烧温度对成瓷的质量为重要,它直接影响到陶瓷的致密度和晶体生长。烧结过程中致密度的提高主要是靠离子扩散来进行。离子扩散的速度由扩散系数η决定。扩散系数是温度的函数,即
其中η0是与材料的性质和颗粒大小有关的常数,β是与活化能有关的常数。由公式可以看出,当温度升高时,扩散系数增大,烧结过程加快;但温度过高,超过烧结温度的上限,则由于出现过多的液相,可能发生粘连,或由于挥发使密度下降,性能恶化,也会容易造成陶瓷发生较大的变形。烧结温度对晶粒生长也有很大影响,随着温度的升高,晶粒生长的速度加快,所以温度过高也会使陶瓷由于晶粒生长过大而变脆,强度减弱。保温时间、升温速率等对成瓷质量也有影响。
根据他人的报道及我们的初步探索,对于(1)体系在960~1160℃;(2)体系在1100~1160℃烧结2小时以制备致密陶瓷;(3)体系在960~1140℃范围内烧结。在初期摸索烧结工艺时,没有采用任何特殊的方法来防止Bi挥发,烧结后陶瓷片色泽呈淡黄与明黄相间,样品的强度差、成瓷性不好。因此,后期在烧结时采用Bi2O3粉料提供Bi气氛及埋烧的方法以防止Bi元素挥发,制备致密的陶瓷材料。
在铋层状陶瓷的制备过程中,由于Bi2O3在高温下挥发,在材料中容易形成Bi空位,随后产生氧空位,从而影响材料的漏电流和抗疲劳性能。为补充材料制备过程中损失的Bi元素,一般在烧结过程中,在承烧板(锆板)上烧结样品附近的某一区域内放入原料质量比为5~10%的Bi2O3原料形成Bi气氛,以保证晶粒正常生长。Bi2O3的熔点只有824℃,在烧结过程中当温度高于熔点时,会形成液相。液相的形成有助于烧结初期快速提高密度,但是终会得到一个比较低的密度,这是由于液相的原因形成了孔隙,而这些孔隙又是烧结中难以消除的。因此适量添加Bi2O3粉料形成Bi气氛将对铋层状陶瓷的烧结行为产生很大的影响。
在烧结过程中,为尽量减少Bi2O3的挥发,采用图2.1所示的埋粉法烧结。埋烧法
是在高温锻烧时用三氧化二铝作为埋粉将要烧结的预合成好的陶瓷坯体夹中间。
图2.1埋烧法示意图
Fig.2.1.Schematic diagram of the sintering process
图2.2固相反应法的工艺流程图
Fig.2.2 Schematic representation for the process of the preparation
由于高层数的铋层状陶瓷难以形成,因此我们控制坯体烧结时的升温速率:在900℃以前分别以10℃/min快速升温,此后分别以8℃/min和5℃/min升至所需烧结温度,并在烧结温度下保温2~2.5小时。将所制备的样品用320~800目的砂纸打磨成0.5mm厚度的陶瓷圆片,并在上下表面分别镀上电,两边镀上不同直径大小银电的目的为了防止边缘漏电效应。固相反应法制备铋层状陶瓷的具体工艺流程如图2.2。
16 4.3.2化工艺对压电性能的影响
经人工化处理以后,压电陶瓷的电畴按化电场方向取向排列,这个取向的程度愈高,材料的压电活性就愈强。对于晶格结构很完整的材料,要使它的电畴作90°转动就比较困难。因而化以后的效果,或者说对化强度的贡献,主要是来自化时作180°反转的那些畴。在这种情况下,材料的压电性能就比较难于充分地发掘出来。如果能够设法使一些晶胞的结构发生畸变,这样在人工化处理时就有利于晶胞自发化的转向,即有利于电畴的反转,压电活性也就会有所提高。[7]
铁电陶瓷要经人工化处理后,才具有压电性。要使铁电陶瓷得到高程度的化,充分发挥其潜在的压电性能。合理地选择化条件。即选择化电场、化温度和化时间这三个因素彼此又互有关系。
理论上,当外界电场超过矫顽场强时,应该可以使大部分电畴转向而完成化。但实验表明,在这样的电场作用下,维持很长时间,虽然可以得到一定的化性质,却不能说压电特性己得到充分的发挥。为了把压电特性充分发掘出来,必须加电场至饱和场强,它的数值远比矫顽场强高(约3一4倍)。因此,矫顽场强是化时选择场强的下限,饱和场强则可以认为是化时选择场强的上限。不论是矫顽场强和饱和场强,都随温度升高而降低。
温度升高使畴运动更容易进行。显然,如果在较高的温度下进行人工化,效果可以更好些。
在实际选择化电场时,有时会受到击穿的限制,就是说,未到达饱和场强,样品即被击穿。击穿场强与配方有关,还受样品中存在气孔、裂缝及成分不均匀等因素影响。击穿场强与样品的厚度也有关系。
当外加电场超过矫顽场后,化的建立是突变的,但压电性尚不能立即充分地发挥出来,必须保持相当长的时间后,才能得到一定程度的化性能。化时间长短,对不同的材料也不一样,与化电场、化温度也有关系。在同样的化电场和化时间下,化温度愈高,则电畴愈易趋于定向排列,化效果较好。这可以作如下理解:,结晶的各向异性随温度升高而降低。第二,提高温度可使电滞回线变窄,矫顽场变小,实际上也就是使畴运动更容易进行。第三,提高温度还可以减少空间电荷对畴运动的阻碍作用,使材料化更充分。实际选择化温度时,都是以温度高一些为好,但是如前所述,在提高化温度时,经常遇到的问题是电阻率太小,漏电严重,甚至导致电击穿【8】。
另外涂银方式对化效果也有很大影响,由于试片的边缘比较疏松,缺陷较多,很容易造成边缘击穿,本文选择避开边缘的中心涂银方式,可以提高试片的化电压,使材料的压电性能充分发挥出来。
综合考虑各方面因素,实际试验过程中一般选择的化条件为:160~170°,4000—6000V/mm,30min。将样品上银浆,化,放置一天测其压电常数d33电滞回线。
18 对于有些化后性能较差的制品可利用压电体电滞回线的特性, 进行“ 反向化”给予弥补。反向化就是把已化过的制品反方向化一次反向化电压略高于头一次化的电压。经过反向化其, 值大约可提高以内, 有些也可达。